Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2146712.v1

ABSTRACT

Almost three years into the SARS-CoV-2 pandemic, hybrid immunity is highly prevalent worldwide and more protective than vaccination or prior infection alone. Given emerging resistance of variant strains to neutralizing antibodies (nAb), it is likely that T cells contribute to this protection. To understand how sequential SARS-CoV-2 infection and mRNA-vectored SARS-CoV-2 spike (S) vaccines affect T cell clonotype-level expansion kinetics, we identified and cross-referenced TCR sequences from thousands of S-reactive single cells against deeply sequenced peripheral blood TCR repertoires longitudinally collected from persons during COVID-19 convalescence through booster vaccination. Successive vaccinations recalled memory T cells and elicited antigen-specific T cell clonotypes not detected after infection. Vaccine-related recruitment of novel clonotypes and the expansion of S-specific clones were most strongly observed for CD8+ T cells. Severe COVID-19 illness was associated with a more diverse CD4+ T cell response to SARS-CoV-2 both prior to and after mRNA vaccination, suggesting imprinting of CD4+ T cells by severe infection. TCR sequence similarity search algorithms revealed myriad public TCR clusters correlating with human leukocyte antigen (HLA) alleles. Selected TCRs from distinct clusters functionally recognized S in the predicted HLA context, with fine viral peptide requirements differing between TCRs. Most subjects tested had S-specific T cells in the nasal mucosa after a 3rd mRNA vaccine dose. The blood and nasal T cell responses to vaccination revealed by clonal tracking were more heterogeneous than nAb boosts. Analysis of bulk and single cell TCR sequences reveals T cell kinetics and diversity at the clonotype level, without requiring prior knowledge of T cell epitopes or HLA restriction, providing a roadmap for rapid assessment of T cell responses to emerging pathogens.


Subject(s)
COVID-19
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.03.21267036

ABSTRACT

We compared the phenotype, diversity, and antigen specificity of T cells in the breastmilk and peripheral blood of lactating individuals who received SARS-CoV-2 mRNA vaccination. Relative to blood, breastmilk contained higher frequencies of T effector and central memory populations that expressed mucosal-homing markers. T cell receptor (TCR) sequence overlap was limited between blood and breastmilk. Overabundant breastmilk clones were observed in all individuals, were structurally diverse, and contained CDR3 sequences with known epitope specificity including to SARS-CoV-2 Spike. Spike-specific TCRs were more frequent in breastmilk compared to blood and expanded in breastmilk following a third mRNA vaccine dose. Our observations indicate that the lactating breast contains a distinct T cell population that can be modulated by maternal vaccination with potential implications for infant passive protection.


Subject(s)
Memory Disorders , Severe Acute Respiratory Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL